点击小眼睛开启蜘蛛网特效

主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

紧接着前几天的事:

之后,决定买一台整机玩玩。

而现在,主机终于回!来!了!主机回来干什么,当然是——配置环境。

老潘之前也有一些配置环境的文章,可以参考:

-_-|| 没想到那会写了这么多配置环境的文章,可能那会遇到的问题比较多吧…配环境什么的,其实只要严格按照步骤来一步一步配,基本上不会出现什么问题,出现问题一般都是我们某一步没有走对,而退回去再走比较麻烦而已。

而现在对于配环境来说可以是轻车熟路了(前几年不知道踩了多少坑,到现在都印象深刻),严格按照步骤来,安装Ubuntu和配置深度学习环境,1个小时多就搞定了。

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

接下来略微详细地讲一下过程。

  • Windows下安装Ubuntu-18.04
  • 配置深度学习环境(Cuda+Cudnn+Pytorch+TensorRT)

主机长这样

先放一组图吧。

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

晚上开机还挺炫的,但其实对于老潘来说炫不炫不重要,性能好就行…

主机配环境

主机回来店家只给我装了Windows系统,对于老潘来说,打游戏是次要的(哈哈哈哈…),忍住了先下载一个鬼泣5玩玩的想法。先从Ubuntu官方下载了官方的镜像包。

官方最新的Ubuntu是20.10,但对于搞事的人来说,还是18.04版本好一些(之前实验室用的是16.04)。

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

开始配置双系统,双系统是必须的,Ubuntu可以搞深度学习,也可以当服务器使,Windows则可以应付一些游戏和其他应急应用。

关于如何将下载好的Ubuntu系统镜像制作成U盘、如何安装,老潘这里不赘述了。可以看以下这篇文章,介绍的很详细,我就是按照这个严格来执行的:

当然如果有问题欢迎交流,直接留言即可~

安装过程

虽然不赘述了,但还是简单过一下:

进入BIOS,选择Ubuntu启动U盘,然后开始安装Ubuntu:

其他一路点点点,然后简单分个区。

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

然后开始安装…

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

等待半小时,装好了!

设置SSH

为什么要设置ssh,当然是想让这个Ubuntu充当一个服务器的作用,开启之后可以使用ssh登录去操作。

例如我,可以先把服务器开了,然后使用其他电脑,例如MAC,使用局域网通过SSH连接这个服务器即可。

怎么开启ssh呢?新的Ubuntu系统还没有安装SSH。

执行以下命令:

sudo apt install openssh-server
sudo systemctl start ssh.service

然后可以通过netstat -lnp | grep 22查看下开启没。

如果想要每次启动自动开启SSH,可以这样:

sudo systemctl enable ssh

这样就差不多啦。

安装NVIDIA显卡驱动

默认Ubuntu安装的是llvmpipe这个显卡驱动,这个是linux下的公用显卡驱动,现在需要换成NVIDIA的。

首先禁用nouveau

执行sudo gedit /etc/modprobe.d/blacklist.conf

加上以下这两句:

blacklist nouveau
options nouveau modest=0

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

保存后,然后执行:

sudo updata-initramfs -u
sudo reboot

重启后,Ctrl+Alt+F1切换到tty界面,关闭lightdm(如果没有则不用管):

sudo service lightdm stop

然后更新一下apt源以及看一下系统推荐的NVIDIA驱动版本:

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
ubuntu-drivers devices

根据推荐的驱动版本,安装NVIDIA驱动:

sudo apt-get install nvidia-driver-460

如果嫌慢,可以添加阿里或者清华源:

sudo cp /etc/apt/sources.list /etc/apt/sources.list.bcakup
sudo gedit /etc/apt/sources.list

备份之后打开文件,添加以下源即可:

# 阿里云源
deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse
##測試版源
deb http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse
# 源碼
deb-src http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse
##測試版源
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse


# 清华大学源
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse
##測試版源
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse
# 源碼
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse
##測試版源
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse

别忘了添加之后,进行更新二连:

sudo apt-get update
sudo apt-get upgrade

这样就可以顺利的安装NVIDIA驱动了。

然后下载好以下三个深度学习伴侣

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

开始安装吧!

安装Cuda、Cudnn

Cuda当然是必须要装的。

找到下载好的11.1cuda环境包(现在出来11.2了),然后执行:

sudo sh cuda_11.1.0_455.23.05_linux.run

会出来一堆blabla的选项:

  • 1、确保你环境里头是否有旧的cuda,有的话建议删除
  • 2、同意条款..
  • 3、确认是否要安装驱动、安装demo…以及安装位置确定
  • 4、开始安装ing

对于老潘来说,上一步中已经安装了cuda驱动,不需要再装旧版的(新版驱动兼容旧版驱动匹配的cuda),所以这里就把驱动选项去掉,其他的安装按照我的需求按部就班来就好。

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

注意
如果你没有root权限,无法使用sudo,想要安装cuda也是可以的。只要自定义好安装位置即可,运行如下命令即可将cuda安装到当前home下的software文件夹内:

./cuda_11.1.0_455.23.05_linux.run --silent --toolkit --toolkitpath=$HOME/software/cuda --defaultroot=$HOME/software/cuda

不论咋样安装好之后会显示:

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

按照上面的要求配置环境变量即可:

(base) oldpan@oldpan-fun:~/software$ vim ~/.bashrc  

将
export PATH=/usr/local/cuda-11.1/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.1/lib64:$LD_LIBRARY_PATH
添加到打开的文件中

(base) oldpan@oldpan-fun:~/software$ source ~/.bashrc
(base) oldpan@oldpan-fun:~/software$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Tue_Sep_15_19:10:02_PDT_2020
Cuda compilation tools, release 11.1, V11.1.74
Build cuda_11.1.TC455_06.29069683_0

Cudnn

cudnn的安装就比较简单了,解决压缩包然后复制粘贴就行:

tar -xzvf cudnn-11.2-linux-x64-v8.1.1.33.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h

安装Anaconda

安装Anaconda也很简单,从这里下载好(不想下的看老潘整理文末的软件包):

然后sh Anaconda3-2020.11-Linux-x86_64.sh就行。

安装好之后,配置conda以及pip清华源,参考以下文字即可:

安装Pytorch

安装Pytorch就比较简单了,如果不想自己编译,直接从官方按照你的Cuda版本和Cudnn版本安装即可:

https://download.pytorch.org/whl/torch_stable.html

安装好Pytorch之后,测试一下cuda是否工作正常:

>>> import torch
>>> torch.cuda.is_available()
True
>>> torch.ones(1).cuda()
tensor([1.], device='cuda:0')
>>> torch.cudnn_is_acceptable(torch.ones(1).cuda())
True

OK~

TensorRT

TensorRT单独发一篇文章来说吧~

一些资源

配环境需要很多软件包,例如:

  • Anaconda
  • Pytorch.whl
  • TensorRT
  • CUDA
  • CUDNN

有些可以在清华大学开源软件镜像站下载,但是TensorRT和CUDA、CUDNN需要从官方下而且需要注册而且很慢。

老潘整理了一些已经下载好的软件包。

公众号内回复015获取,可以看看有没有你需要的:

《主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)》

想写的还有很多,下篇再讲(呼呼)。

如果有问题欢迎留言,欢迎关注「oldpan博客」公众号,老潘的全部家当都在这里了。很愿意与你交朋友~

参考

https://www.cnblogs.com/masbay/p/10745170.html
https://blog.csdn.net/ZPeng_CSDN/article/details/96726436

  点赞
本篇文章采用 署名-非商业性使用-禁止演绎 4.0 国际 进行许可
转载请务必注明来源: https://oldpan.me/archives/ubuntu-deep-learning-cuda11-cudnn

   关注Oldpan博客微信公众号,你最需要的及时推送给你。


发表评论

邮箱地址不会被公开。 必填项已用*标注

评论审核已启用。您的评论可能需要一段时间后才能被显示。